
Supplementary Figure 1.

Supplementary Figure 1. PolyPhen-2 automated sequence alignment pipeline. The choice of homologs 
to be included and the quality of the multiple sequence alignment (MSA) are critical for the performance 
of the method. We have found that including both orthologs and paralogs of the analyzed sequence in 
MSA leads to more accurate predictions, perhaps because a majority of disease-causing replacements 
affect protein structure, rather than specific aspects of function1. We identify homologs of the analyzed 
sequence using BLAST+2 and align the amino acid sequences using MAFFT3. Because the resulting 
alignments often contain poor-quality segments, we refine them using Leon software4. Finally, we 
cluster reliably aligned sequences using Secator algorithm5 implemented in ClusPack software 
(http://www-bio3d-igbmc.u-strasbg.fr/~wicker/programs.html). Only the homologs that belong to a 
compact cluster which includes the analyzed sequence are taken into account. Using the remaining 
sequences decreases the quality of prediction, perhaps due to accumulation of compensatory changes6.
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Supplementary Figure 2. Stacked bar histograms showing distributions of difference in PSIC score 
between a wild type and the corresponding mutant amino acid for HumDiv (a) and HumVar7 (b). Each 
bar contains two parts, a red part representing the fraction of benign replacements with this value of the 
parameter and a blue part representing a corresponding fraction of damaging replacements. In both cases 
red and blue distributions are unimodal with well-separated peaks, although the benign mode (red) is 
quite different between HumDiv and HumVar.
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Supplementary Figure 3. Distributions of the values of all 11 features utilized by PolyPhen-2 classifier 
and a class label for HumDiv (a) and HumVar7 (b). Stacked bar histograms presented here follow the 
same conventions as in Supplementary Fig. 2.
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Supplementary Figure 4. Scatter plots of the difference in PSIC score between a wild type and the 
corresponding mutant amino acids (score_delta) together with the sequence identity of the closest 
homolog carrying a non wild-type amino acid (id_q_min) and with the congruency of the mutant allele 
to multiple alignment (id_p_max) in HumDiv (a) and HumVar7 (b). Together, these two features 
provide somewhat better separation of benign and damaging mutations than any single feature.
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Supplementary Table 1. Complete list of all 32 initial features considered, with 11 final features 
selected for use in PolyPhen-2 classifier highlighted in blue font.



Supplementary Table 2.

Software: PolyPhen PolyPhen-2 SIFT SNAP SNPs3D

Dataset: HumDiv HumVar HumDiv HumVar
HumVar-
HumDiv

HumVar

Database: UR SP UR SP UR SP UR SP UR SP SP n/a n/a

FPR TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR TPR

0.10 0.696 0.599 0.499 0.422 0.767 0.720 0.552 0.509 0.522 0.495 n/a 0.474 0.485

0.15 0.765 0.690 0.593 0.524 0.866 0.807 0.659 0.614 0.635 0.590 0.514 0.569 0.597

0.20 0.820 0.754 0.660 0.603 0.918 0.870 0.734 0.684 0.717 0.679 0.616 0.641 0.672

0.25 0.852 0.793 0.711 0.664 0.947 0.910 0.787 0.740 0.782 0.735 0.689 0.695 0.726

0.30 0.876 0.823 0.751 0.718 0.963 0.932 0.836 0.792 0.836 0.793 0.745 0.737 0.769

0.35 0.896 0.846 0.788 0.760 0.973 0.951 0.867 0.833 0.866 0.827 0.789 0.774 0.807

0.40 0.908 0.864 0.820 0.792 0.976 0.964 0.897 0.868 0.896 0.861 0.823 0.802 0.838

0.45 0.920 0.882 0.847 0.817 0.978 0.973 0.921 0.897 0.920 0.893 0.853 0.830 0.862

0.50 0.932 0.902 0.873 0.840 0.980 0.977 0.940 0.919 0.937 0.921 0.880 0.852 0.882

0.55 0.940 0.918 0.894 0.861 0.982 0.979 0.954 0.938 0.950 0.938 0.904 0.875 0.901

0.60 0.949 0.930 0.913 0.881 0.984 0.982 0.965 0.957 0.963 0.954 0.922 0.893 0.915

0.65 0.956 0.942 0.927 0.903 0.986 0.984 0.973 0.969 0.969 0.966 0.936 0.911 0.932

0.70 0.962 0.949 0.939 0.919 0.988 0.986 0.979 0.977 0.973 0.973 0.951 0.926 0.946

0.75 0.969 0.960 0.952 0.938 0.990 0.989 0.984 0.985 0.978 0.978 0.964 0.939 0.958

0.80 0.975 0.971 0.963 0.953 0.992 0.991 0.988 0.990 0.982 0.982 0.975 0.953 0.969

Supplementary Table 2. Receiver operating characteristics (ROC) for PolyPhen8, PolyPhen-2, SIFT9, 
SNAP10, and SNPs3D11 prediction methods. FPR, False Positive Rate; TPR, True Positive Rate. 
PolyPhen (v1.18), ROC based on the absolute value of difference between PSIC12 profile scores of the 
two allelic variants; PolyPhen-2 (v2.0.17), ROC based on the probabilistic score derived from the Naïve 
Bayes model with discretization (see Supplementary Methods); SIFT (v3.0), ROC based on SIFT 
Score; SNAP (http://cubic.bioc.columbia.edu/services/SNAP/), ROC based on Expected Accuracy; 
SNPs3D (http://www.snps3d.org/), ROC based on SVM Profile score. HumDiv, consists of 3,155 
damaging alleles with known effects on the molecular function causing human Mendelian diseases 
annotated in the UniProt database, together with 6,321 differences between human proteins and their 
closely related mammalian homologs, assumed to be non-damaging; HumVar7, consists of all the 
13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without 
annotated involvement in disease, which were treated as non-damaging; HumVar-HumDiv, consists of 
SNPs present in HumVar data set with all SNPs corresponding to the proteins also present in the 
HumDiv data set excluded to avoid bias due to overlap of training and testing data (resulting in a total of 
10,583 SNPs in the final set). All predictions by PolyPhen-2 were obtained using 5-fold cross-validation 
procedure as described in Supplementary Methods, except for HumVar-HumDiv data set which was 
tested using model trained on HumDiv dataset. This latter approach was utilized to improve 
compatibility with the results obtained from SIFT, SNAP, and SNPs3D methods. UR, UniRef10013 

Release 15.12 of 15-Dec-2009; SP, UniProtKB/Swiss-Prot13 Release 57.12 of 15-Dec-2009.



Supplementary Methods

HumDiv dataset compilation

The set of damaging mutations was retrieved from UniProtKB13. Mutations were considered damaging if 
their annotations contained keywords implying causal mutation-phenotype relationship (“lethal”, 
“complete loss of function”, “causes”, “abolishes”, “no detectable activity”, “impairs”, etc.). Among 
those, we excluded a small number of ambiguous mutations:

• mutations in hemoglobins (203 cases)

• mutations annotated as “unknown” (36 cases)

• cancer-related mutations (182 cases)

• mutations in proteins whose annotations do not contain keyword “disease mutation” (32 cases).

The set of non-damaging mutations was compiled from differences in homologous protein sequences of 
closely related mammalian species. The data can be downloaded from:

 ftp://genetics.bwh.harvard.edu/datasets/HumDiv.tar.gz

Feature selection

PolyPhen-2 uses 11 predictive features which were selected automatically by an iterative greedy 
algorithm out of a set of nineteen sequence-based and thirteen structure-based candidate features. The 
performance of classifiers is often negatively affected by the presence of irrelevant or redundant features 
(Supplementary Table 1). To select the optimal set of features, we employed machine-learning 
methods14. Both feature selection and classifier testing were performed in a 5-fold cross-validation 
scheme, where folds were not randomized but created to ensure that mutations in the same protein 
would all fall into the same fold. This was done in order to avoid selecting feature values serving as 
“proxies” to specific proteins, since protein identity could hold a strong clue to whether the mutation is 
damaging or not. After initially testing on HumDiv, we tested the best performing classifiers on the 
holdout pair of datasets HumVar7 and retained features, which provided some improvement.  We 
selected features using both forward selection and backward elimination. In the forward greedy search 
we continuously added features in the order of their individual performance until there was no increase 
in prediction accuracy in a cross-validation test. The prediction accuracy was measured by the area 
under the ROC curve, i.e., as integral value of sensitivity over all specificity thresholds. In the reverse 
search, we excluded individual features until a reduction in prediction accuracy was observed. We 
further controlled the feature selection by measuring performance on the holdout HumVar pair of 
datasets. Both approaches resulted in the same set of eleven features described below. 

PSIC score. This profile score reflects how likely it is for a particular amino acid to occupy a specific 
position in the protein sequence, given the pattern of amino acid substitutions observed in the multiple 
sequence alignment. This score has the form of likelihood ratio and is computed using the PSIC 
algorithm12, which takes the relatedness of homologous sequences into account and uses prior 
probabilities derived from the amino acid substitution matrix (BLOSUM62). The PSIC score of the 
wild-type amino acid and the difference between the PSIC scores of the wild type and the mutant amino 
acids were treated as two separate features.

The sequence identity to the closest homologue carrying any amino acid that differs from the wild-type 
allele at the site of the mutation considered.

Congruency of the mutant allele to the multiple alignment. For each amino acid at the analyzed site, we 
computed the sequence identity between the analyzed protein and its closest homologue in which this 
amino acid is observed. We further computed a product of this sequence identity and the probability, 
provided by BLOSUM matrix, that this amino acid would be substituted by the mutant amino acid. The 
maximal value of this product over all amino acids was treated as a feature.

ftp://genetics.bwh.harvard.edu/datasets/HumDiv.tar.gz


CpG context. CpG context of transition mutations was treated as a feature.

Structural features. Three additional features were selected for proteins with known 3D structures: 1) the 
accessible surface area of the wild-type amino acid residue, 2) the change in the hydrophobic propensity 
in the form of “knowledge-based potential”, and 3) crystallographic B-factor reflecting conformational 
mobility of the wild-type amino acid residue15.

The remaining three features are alignment depth (excluding gaps) at the site of the mutation, change in 
the amino acid volume between wild type and mutant amino acids, and whether the site of the mutation 
resides within an annotated Pfam  16   domain  .

Classification method

Our method of classification has to deal with data consisting of a mixture of discrete and continuous-
valued features and containing a substantial fraction of irregularly scattered missing values. These 
challenges are naturally handled by a Naïve Bayes approach coupled with entropy-based discretization17. 
This approach performed about equally well as a number of other machine-learning approaches: logistic 
regression, alternating decision tree, and support vector machine, and outperforms decision trees and 
random forests. We chose Naïve Bayes for its simplicity because, in contrast to other approaches, it does 
not contain any parameters, except for representing factored probabilities and smoothing, which is done 
by Laplace estimators. For a mutant allele, Naïve Bayes approach produces the likelihood that this allele 
affects protein function, phenotype, and fitness, or, in other words, is damaging, as opposed to benign.

Naïve Bayes approach, as any method of supervised classification, requires data for training and for 
testing. We used the same pair of datasets, containing known damaging and known benign alleles, for 
both purposes. Each pair of datasets was split into 5 approximately equal parts, in such a way that all 
mutations of a protein were assigned to the same part. Then, 4 parts were used for testing and the 
remaining one for validation, and the procedure was repeated 5 times with different parts used for 
validation (5-fold cross-validation14).

Qualitative appraisal of mutations

The true positive rate was calculated as the fraction of correctly predicted damaging mutations for a 
given threshold of Naïve Bayes probabilistic score. The false positive rate was calculated as fraction of 
benign mutations erroneously predicted as damaging. A mutation is classified as “probably damaging” if 
its probabilistic score is above 0.85, corresponding to the fraction of false positives under 10% on 
HumDiv and under 19% on HumVar (true positive rates are 78% and 71%, respectively). A mutation is 
classified as “possibly damaging” if its probabilistic score is above 0.15, corresponding to the fraction of 
false positives under 18% on HumDiv and 40% HumVar (true positive rates are 89% and 90%, 
respectively). The remaining mutations are classified as benign.
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